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Ex 10.1 (Partial derivatives and C'-functions)

Let (X;)}_;,Y be Banach spaces and X = [[;_, X; be equipped with the norm max; [|lz|x;.
Let U C H -, X; be open and F' : U — Y Show that if all partial derivatives exist and
O, F € C(U,L’(Xj,Y)), then F € CY(U,Y).

Hint: Guess the form of the derivative using a result in the lecture notes.

Solution 10.1 : We first show that F' is differentiable in any point (z1,...,x,) € U with
F/(LUI,..., )hl,..., Zaszl’l,...,l’n)hj v<h1,...,hn)€X.

First note that the right-hand side indeed defines a linear, bounded operator in £(X,Y).
Before we continue, let us introduce some notation to save space. For j € {1,...,n} set
H; = (h1,...,h;,0,...,0) € X and = = (x1,...,2,) € X. By the triangle inequality we
have that

|F(z + H,) Za F(z)h]| < ZHF (v + Hj) — F(z + Hj_y) — 0, F(z)hy|

Now for each j define g; : [0,1] — Y by g;(t) = F(z + t(H; — H;_1) + Hj_1) — t0,, F(x)h;
Note that function g varies F' only in the jth component. Hence the existence of the partial
derivatives implies that ¢ is differentiable and by the chain rule (recall that H; — H;_y = h;)
we have that

g;(t) = 0p, Fx 4+ t(H; — Hj_1) + Hj_1)hj — 0y, F(x)h;.

Hence from the mean value theorem we deduce that

1 (2 + Hj)=F(z + Hj 1) = 0:, F ()b = [lg;(1) — g;(0)I| < sup [lg;(®)]

t€[0,1]
=S 100, F'(2 + ¢(Hj — Hj1) + Hj1) = Ou, F ()| 0,39 || 5]
te[0,1
< sup NuF o+ H) = ) F@)lleox, ) 1Hall
IH[I<[Hnll
where we used that | H;_1 +t(H; — Hj_1)|| < t||H;||+ (1 —t)||H;j-1|| < |[Hy||- This implies that

| F(z + Hy) — F(x) — Y0 0n, F() |
= J=1 <Z sup H@ F(xe+H) - 0ij(x)|]£(Xj,y);
|| Hol <] Ha



by the continuity of the partial derivatives, we deduce differentiability of F' by taking the limit
I|H,|| — 0 in the above inequality.

Finally, in order to show the continuity of the derivative, take any H € X with ||H|| < 1. Then
by definition of the norm on X we have ||h;|| <1 for all j, where H = (hy,...,h,). Hence

|E"(@)H — F'(x0)H|| < ) 100, F (2)h; — O, F (o) |

j=1
< Z Haij(.T) - aij(xO)”C(Xj,Y)”th < Z HanF(I) - aﬂ?jF<x0)||ﬁ(Xj,Y)'
Jj=1 J=1

Passing to the sumpremum over H in the left-hand side we infer that

1F" () = F'(z0)llecxyy < Y 1100, F(x) = 0o, F (o) | ecx,v)-

j=1

The right-hand side tends to 0 when x — ¢ by continuity of the partial derivatives. Hence F’
is continuous and therefore F' € CY(U,Y).

Ex 10.2 (Consequences of Banach’s fixed point theorem*)
Let X be a Banach space. Prove the following two statements :
a) Let T : X — X. If there exists 6 € (0,1) such that [|T'(z) — T(y)|| < 0||lx — y|| for all
x,y € X, then I — T is a homeomorphism from X to X.

b) Let S: Bs(0) C X — X and assume that there exists § € (0,1) such that
15(x) = S(y)ll < Ollx — y|| for all z,y € B5(0).
If ||S(0)|| < 6(1 — @), then I + S has a unique zero. Moreover,
B,(0) < (I +5)(B5(0))

for p = (1 —6)d — [[S(0)].
Ex 10.3 (Square root of an operator)
Let E be a Banach space and put X = L(FE, E). Consider the function F': X — X such
that F'(T) = T o T (which we can informally write as F(T) = T'?). Show that there exists a

neighborhood U of I (the identity operator on E) and a differentiable map G: U — X such
that G(T)> =T for all T € U.

Solution 10.3 : First, we check that F' is differentiable on X. For this, let 7, S € X and ¢ € R.
Using linearity of 7" and S, and the properties of composition operation ‘o’, for any v € E we
arrive at

F(T+eS)w—-—FTv=(T+eS)o(I'+eS)v—(ToT)v
=e(ToSw+e(SoT)v+e*(SoSw
thus the derivative of F' has to read
F'(T)S=ToS+SoT.

It is easy to verify that F'(T) € £(X); using the fact that || Ao BJ| < ||A|||B]|| whenever A and
B are linear operators (by the definition of the operator norm), we have

IF(T + 8) = F(T) = F/(T)S|lx = [[(S o 9)llx < [ISI%.



so that F'(T) is indeed the Fréchet derivative of F' at T'. Note also that the mapping 7' +— F'(T)
belongs to L(X, L£(X)), so it is continuous.

We have F'(Ig)S = 2S for all S € X, which has the inverse given by S — (1/2)S. Therefore,
from the inverse function theorem there exists an open neighborhood U of I and a C! function
G: U — X such that

(FoG)T)=T

for all T" € U. By the definition of F', the above identity reads as

G(T)oG(T)=T forall T €U.

Ex 10.4 (Small-norm solutions of nonlinear BVP)
Consider the nonlinear boundary value problem (BVP for short)

v+ X" =0 in (0,7), wu(0)=0=u(n).

Applying the implicit function theorem to the map F': X x R — Z, F(u, \) = u” 4+ Aexp(u),
where

X :={ueC*[0,7]): w(0)=0=u(r)} withnorm |jul|x = sup |u"(t)],

te[0,m]

Z = C([0, ),

prove that for A in a neighborhood of 0 this problem has a unique small-norm solution that
depends continuously on .

Hint: You can use without proof that (X, | - |x) is a Banach space.

Comment : in the above, the “small-norm” condition is specified, since otherwise uniqueness
1s not clear. Using convexity arguments, one could show that the solution is globally unique
provided that A <0 .

Solution 10.4 : It is straightforward to check that F'(u,0) = 0 iff u = 0 on [0, 7]. Therefore,
for A = 0, the zero function is the unique solution to the BVP ; we want to use implicit function
theorem (for the map F' : X x R — Z, around the point (0,0)), to deduce the existence of
paramaters r > 0, § > 0 such that there exists a unique map 7" : (—r,r) — m C X such
that F'(A\,T(\)) =0 for all A € (—r,7).

In the setting of our BVP problem, this means that, for any A with |\| < r, there exists a solution
u := T(\) which solves the BVP problem, which moreover is unique (by the uniqueness of T')

in the class of solutions u such that |lu|x < 4.

Comment : this is why we talk about uniqueness for “small-norm” solutions, this condition
naturally arises from an application of the implicit function theorem ; it doesn’t prevent the
existence of other solutions @, as long as they satisfy ||a||x > 0.

We must verify the assumptions of the implicit function theorem.
To prove that F' is continuous, note that

1 (u, A) = F(o, p)llz < [lu = vllx + A= pl- ez +[ul - [le” — €]z (1)

To show that the right-hand side goes to zero as (u, ) — (v, ) in X x R, we will first show
for any u € X we can control the norm |lu||z with ||u|x. Indeed, integrating u” twice from 0
to m and using the boundary condition u(0) = 0, we find

u(t) = tu'(0) + /Ot /OT u"(s)dsdr.



Now, the boundary condition u(m) = 0 yields

:——// dsdT—l—// s)dsdr (%)

and thus there is a constant C > 0 such that

lullz < € sup [u"(B)] = Cllullx. (2)

€l0,m

Having established this fact, given a sequence (u,,\,) — (u,\) in X x R, then necessarily
lun, — ul|z — 0. As a consequence, there exists a constant R such that |u(z)| + |u,(s)| < R for
all s € [0, 7] and n € N; since x — €” is a continuous function, it is uniformly continuous and
bounded for |z| < R; denote by w its modulus of continuity on this set. It then follows from
(1) that

1 (ttns An) = F(u, Mz < 1= wnllx + [A = pl e + sup [An| w([Jun — ul2)-

Passing to the limit as n — oo, we deduce continuity of F.

Comment : for didactical purposes, we proved continuity of F' in a self-contained matter. But if
one directly proves Fréchet differentiability of F (we will shortly do it only in the u-variable),
then one can automatically deduce continuity of F' from the result of the notes

Furthermore, for u,v € X, A €¢ R, and € € R\ {0}

1 ev
E[F(u—i-ev,)\)—F(u,)\)}:v"—l—Ae“e —

taking the limit ¢ — 0 we expect that
Dy F(u, \)v = 0" + \e'v. (3)

Informed with the educated guess (3) for D, F, we now verify that this is indeed the case. It is
convenient to notice that F'(u, \) = Fi(u) + AFy(u), for Fy(u) = u” and Fy(u) = €*; since F} is
linear, it is also Fréchet with D, Fi(A, u)(v) = Fi(v), so we only need to check differentiability
of F5. By the same argument as above, we expect D, Fy(\,u) = e"v. For any u, v € X, it holds

’eu(t)+v(t) . eu(t) . e“(t)v(t)\ < ‘U(t)‘ sup |€u(t)+h . eu(t)‘
hel0,v(t)]

where we used the mean valued theorem and the fact that (e*)’ = e*. It follows that, for
lv]|z < e, it holds

le™ —e* =]z < lvllz sup  w(|hl)

hel0,]|v]| 2]

where we also used again the uniform continuity of e* (with modulus w) on a suitable bounded
set. We deduce that

||eu+v _ eu _ quHZ

< w([lvllz)
[v]] 2

and so (using (2)) we conclude that

1. I|€u0+v _ euo _ GUOU”Z
11
o]l x =0 vl x

:07



which verifies Fréchet differentiability of F5 and overall the existence of D, F' with formula (3).
In view of (2) and (3), it’s easy to check that D, F'(u, \) is a bounded linear operator, with

| DuF (1, V]| < 1+ |A]eClulx

Finally, it remains to verify continuity of (u, A\) — D, F(u, A). Arguing similarly to above, for
any (Ul, )\1), (Ug, )\2) it holds

IDuF (w1, Ar) = DuF (uz, M) || < [|Ae™ = doe™||z < A — Aol 12 4 N[l — e z;

from here, arguing in the same way as when we established continuity of F', we can conclude
that (u, ) — D, F(u, ) is a continuous map.

Comment : notice that, although we performed the argument for x — e*, it would have worked
for any C'-reqular map f : R — R. In particular, going through similar computations, G(u) :=
fou as a map from Z to Z is a C' map with Fréchet differential DG(u)(v) = f'(u)v.

Let us now consider the linear mapping 7" = D,F(0,0) : X — Z. We must show that T is
invertible. To see this, note that for any h € Z

Tv=h <= v"=h in(0,7), v(0)=0=uv(m).

Substituting v for v and h for u” in (x), we obtain

v(t) = (T h)(t) = /07T G(t, s)h(s) ds,

where
——(m—1t)s, 0<s<t,
Git,s)=4¢ "
—lt(ﬂ —3s), t<s<m.
T
By the definition of || - || x, it is also immediate to see that

1T~ Allx = 11"z = 1Al 2

so that 7! is continuous.

Hence, all conditions of the implicit function theorem are satisfied and we may conclude that,
for all A sufficiently small, F'(u,\) = 0 has a unique small-norm solution v € X, and that the
map A — u(A) is continuous.



