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Ex 10.1 (Partial derivatives and C1-functions)
Let (Xj)

n
j=1, Y be Banach spaces and X =

∏n
j=1 Xj be equipped with the norm maxj ∥xj∥Xj

.
Let U ⊂

∏n
j=1Xj be open and F : U → Y . Show that if all partial derivatives exist and

∂xj
F ∈ C(U,L(Xj, Y )), then F ∈ C1(U, Y ).

Hint: Guess the form of the derivative using a result in the lecture notes.

Solution 10.1 : We first show that F is differentiable in any point (x1, . . . , xn) ∈ U with

F ′(x1, . . . , xn)(h1, . . . , hn) =
n∑

j=1

∂xj
F (x1, . . . , xn)hj ∀(h1, . . . , hn) ∈ X.

First note that the right-hand side indeed defines a linear, bounded operator in L(X, Y ).
Before we continue, let us introduce some notation to save space. For j ∈ {1, . . . , n} set
Hj = (h1, . . . , hj, 0, . . . , 0) ∈ X and x = (x1, . . . , xn) ∈ X. By the triangle inequality we
have that

∥F (x+Hn)− F (x)−
n∑

j=1

∂xj
F (x)hj∥ ≤

n∑
j=1

∥F (x+Hj)− F (x+Hj−1)− ∂xj
F (x)hj∥

Now for each j define gj : [0, 1] → Y by gj(t) = F (x + t(Hj − Hj−1) + Hj−1) − t∂xj
F (x)hj.

Note that function g varies F only in the jth component. Hence the existence of the partial
derivatives implies that g is differentiable and by the chain rule (recall that Hj − Hj−1 = hj)
we have that

g′j(t) = ∂xj
F (x+ t(Hj −Hj−1) +Hj−1)hj − ∂xj

F (x)hj.

Hence from the mean value theorem we deduce that

∥F (x+Hj)−F (x+Hj−1)− ∂xj
F (x)hj∥ = ∥gj(1)− gj(0)∥ ≤ sup

t∈[0,1]
∥g′j(t)∥

= sup
t∈[0,1]

∥∂xj
F (x+ t(Hj −Hj−1) +Hj−1)− ∂xj

F (x)∥L(Xj ,Y )∥hj∥

≤ sup
∥H∥≤∥Hn∥

∥∂xj
F (x+H)− ∂xj

F (x)∥L(Xj ,Y )∥Hn∥,

where we used that ∥Hj−1+ t(Hj −Hj−1)∥ ≤ t∥Hj∥+(1− t)∥Hj−1∥ ≤ ∥Hn∥. This implies that

∥F (x+Hn)− F (x)−
∑n

j=1 ∂xj
F (x)hj∥

∥Hn∥
≤

n∑
j=1

sup
∥H∥≤∥Hn∥

∥∂xj
F (x+H)− ∂xj

F (x)∥L(Xj ,Y );



by the continuity of the partial derivatives, we deduce differentiability of F by taking the limit
∥Hn∥ → 0 in the above inequality.
Finally, in order to show the continuity of the derivative, take any H ∈ X with ∥H∥ ≤ 1. Then
by definition of the norm on X we have ∥hj∥ ≤ 1 for all j, where H = (h1, . . . , hn). Hence

∥F ′(x)H − F ′(x0)H∥ ≤
n∑

j=1

∥∂xj
F (x)hj − ∂xj

F (x0)hj∥

≤
n∑

j=1

∥∂xj
F (x)− ∂xj

F (x0)∥L(Xj ,Y )∥hj∥ ≤
n∑

j=1

∥∂xj
F (x)− ∂xj

F (x0)∥L(Xj ,Y ).

Passing to the sumpremum over H in the left-hand side we infer that

∥F ′(x)− F ′(x0)∥L(X,Y ) ≤
n∑

j=1

∥∂xj
F (x)− ∂xj

F (x0)∥L(Xj ,Y ).

The right-hand side tends to 0 when x → x0 by continuity of the partial derivatives. Hence F ′

is continuous and therefore F ∈ C1(U, Y ).

Ex 10.2 (Consequences of Banach’s fixed point theorem∗)
Let X be a Banach space. Prove the following two statements :

a) Let T : X → X. If there exists θ ∈ (0, 1) such that ∥T (x) − T (y)∥ ≤ θ∥x − y∥ for all
x, y ∈ X, then I − T is a homeomorphism from X to X.

b) Let S : Bδ(0) ⊂ X → X and assume that there exists θ ∈ (0, 1) such that

∥S(x)− S(y)∥ ≤ θ∥x− y∥ for all x, y ∈ Bδ(0).

If ∥S(0)∥ < δ(1− θ), then I + S has a unique zero. Moreover,

Bρ(0) ⊂ (I + S)(Bδ(0))

for ρ = (1− θ)δ − ∥S(0)∥.

Ex 10.3 (Square root of an operator)
Let E be a Banach space and put X = L(E,E). Consider the function F : X → X such
that F (T ) = T ◦ T (which we can informally write as F (T ) = T 2). Show that there exists a
neighborhood U of IE (the identity operator on E) and a differentiable map G : U → X such
that G(T )2 = T for all T ∈ U .

Solution 10.3 : First, we check that F is differentiable on X. For this, let T, S ∈ X and ε ∈ R.
Using linearity of T and S, and the properties of composition operation ‘◦’, for any v ∈ E we
arrive at

F (T + εS)v − F (T )v = (T + εS) ◦ (T + εS)v − (T ◦ T )v

= ε(T ◦ S)v + ε(S ◦ T )v + ε2(S ◦ S)v

thus the derivative of F has to read

F ′(T )S = T ◦ S + S ◦ T.

It is easy to verify that F ′(T ) ∈ L(X) ; using the fact that ∥A ◦B∥ ≤ ∥A∥∥B∥ whenever A and
B are linear operators (by the definition of the operator norm), we have

∥F (T + S)− F (T )− F ′(T )S∥X = ∥(S ◦ S)∥X ≤ ∥S∥2X ,



so that F ′(T ) is indeed the Fréchet derivative of F at T . Note also that the mapping T 7→ F ′(T )
belongs to L(X,L(X)), so it is continuous.

We have F ′(IE)S = 2S for all S ∈ X, which has the inverse given by S 7→ (1/2)S. Therefore,
from the inverse function theorem there exists an open neighborhood U of IE and a C1 function
G : U → X such that

(F ◦G)(T ) = T

for all T ∈ U . By the definition of F , the above identity reads as

G(T ) ◦G(T ) = T for all T ∈ U.

Ex 10.4 (Small-norm solutions of nonlinear BVP)
Consider the nonlinear boundary value problem (BVP for short)

u′′ + λeu = 0 in (0, π), u(0) = 0 = u(π).

Applying the implicit function theorem to the map F : X × R → Z, F (u, λ) = u′′ + λ exp(u),
where

X :=
{
u ∈ C2([0, π]) : u(0) = 0 = u(π)

}
with norm ∥u∥X = sup

t∈[0,π]
|u′′(t)|,

Z := C([0, π]),

prove that for λ in a neighborhood of 0 this problem has a unique small-norm solution that
depends continuously on λ.
Hint: You can use without proof that (X, ∥ · ∥X) is a Banach space.

Comment : in the above, the “small-norm” condition is specified, since otherwise uniqueness
is not clear. Using convexity arguments, one could show that the solution is globally unique
provided that λ ≤ 0 .

Solution 10.4 : It is straightforward to check that F (u, 0) = 0 iff u = 0 on [0, π]. Therefore,
for λ = 0, the zero function is the unique solution to the BVP ; we want to use implicit function
theorem (for the map F : X × R → Z, around the point (0, 0)), to deduce the existence of
paramaters r > 0, δ > 0 such that there exists a unique map T : (−r, r) → Bδ(0) ⊂ X such
that F (λ, T (λ)) = 0 for all λ ∈ (−r, r).
In the setting of our BVP problem, this means that, for any λ with |λ| < r, there exists a solution
uλ := T (λ) which solves the BVP problem, which moreover is unique (by the uniqueness of T )
in the class of solutions u such that ∥u∥X ≤ δ.

Comment : this is why we talk about uniqueness for “small-norm” solutions, this condition
naturally arises from an application of the implicit function theorem ; it doesn’t prevent the
existence of other solutions ũ, as long as they satisfy ∥ũ∥X > δ.

We must verify the assumptions of the implicit function theorem.
To prove that F is continuous, note that

∥F (u, λ)− F (v, µ)∥Z ≤ ∥u− v∥X + |λ− µ| · ∥eu∥Z + |µ| · ∥eu − ev∥Z . (1)

To show that the right-hand side goes to zero as (u, λ) → (v, µ) in X × R, we will first show
for any u ∈ X we can control the norm ∥u∥Z with ∥u∥X . Indeed, integrating u′′ twice from 0
to π and using the boundary condition u(0) = 0, we find

u(t) = tu′(0) +

∫ t

0

∫ τ

0

u′′(s) ds dτ.



Now, the boundary condition u(π) = 0 yields

u(t) = − t

π

∫ π

0

∫ τ

0

u′′(s) ds dτ +

∫ t

0

∫ τ

0

u′′(s) ds dτ (⋆)

and thus there is a constant C > 0 such that

∥u∥Z ≤ C sup
t∈[0,π]

|u′′(t)| = C∥u∥X . (2)

Having established this fact, given a sequence (un, λn) → (u, λ) in X × R, then necessarily
∥un − u∥Z → 0. As a consequence, there exists a constant R such that |u(x)|+ |un(s)| ≤ R for
all s ∈ [0, π] and n ∈ N ; since x 7→ ex is a continuous function, it is uniformly continuous and
bounded for |x| ≤ R ; denote by ω its modulus of continuity on this set. It then follows from
(1) that

∥F (un, λn)− F (u, λ)∥Z ≤ ∥u− un∥X + |λ− µ| eR + sup
n

|λn|ω(∥un − u∥Z).

Passing to the limit as n → ∞, we deduce continuity of F .

Comment : for didactical purposes, we proved continuity of F in a self-contained matter. But if
one directly proves Fréchet differentiability of F (we will shortly do it only in the u-variable),
then one can automatically deduce continuity of F from the result of the notes

Furthermore, for u, v ∈ X, λ ∈ R, and ε ∈ R \ {0}

1

ε

[
F (u+ εv, λ)− F (u, λ)

]
= v′′ + λeu

eεv − 1

ε
;

taking the limit ε → 0 we expect that

DuF (u, λ)v = v′′ + λeuv. (3)

Informed with the educated guess (3) for DuF , we now verify that this is indeed the case. It is
convenient to notice that F (u, λ) = F1(u) + λF2(u), for F1(u) = u′′ and F2(u) = eu ; since F1 is
linear, it is also Fréchet with DuF1(λ, u)(v) = F1(v), so we only need to check differentiability
of F2. By the same argument as above, we expect DuF2(λ, u) = euv. For any u, v ∈ X, it holds

|eu(t)+v(t) − eu(t) − eu(t)v(t)| ≤ |v(t)| sup
h∈[0,v(t)|

|eu(t)+h − eu(t)|

where we used the mean valued theorem and the fact that (ex)′ = ex. It follows that, for
∥v∥Z ≤ ε, it holds

∥eu+v − eu − euv∥Z ≤ ∥v∥Z sup
h∈[0,∥v∥Z |

ω(|h|)

where we also used again the uniform continuity of ex (with modulus ω) on a suitable bounded
set. We deduce that

∥eu+v − eu − euv∥Z
∥v∥Z

≤ ω(∥v∥Z)

and so (using (2)) we conclude that

lim
∥v∥X→0

∥eu0+v − eu0 − eu0v∥Z
∥v∥X

= 0,



which verifies Fréchet differentiability of F2 and overall the existence of DuF with formula (3).
In view of (2) and (3), it’s easy to check that DuF (u, λ) is a bounded linear operator, with

∥DuF (u, λ)∥ ≤ 1 + |λ|eC∥u∥X .

Finally, it remains to verify continuity of (u, λ) 7→ DuF (u, λ). Arguing similarly to above, for
any (u1, λ1), (u2, λ2) it holds

∥DuF (u1, λ1)−DuF (u2, λ2)∥ ≤ ∥λ1e
u1 − λ2e

u2∥Z ≤ |λ1 − λ2|e∥u1∥Z + |λ2|∥eu1 − eu2∥Z ;

from here, arguing in the same way as when we established continuity of F , we can conclude
that (u, λ) 7→ DuF (u, λ) is a continuous map.

Comment : notice that, although we performed the argument for x 7→ ex, it would have worked
for any C1-regular map f : R → R. In particular, going through similar computations, G(u) :=
f ◦ u as a map from Z to Z is a C1 map with Fréchet differential DG(u)(v) = f ′(u)v.

Let us now consider the linear mapping T = DuF (0, 0) : X → Z. We must show that T is
invertible. To see this, note that for any h ∈ Z

Tv = h ⇐⇒ v′′ = h in (0, π), v(0) = 0 = v(π).

Substituting v for u and h for u′′ in (⋆), we obtain

v(t) = (T−1h)(t) =

∫ π

0

G(t, s)h(s) ds,

where

G(t, s) =


− 1

π
(π − t)s, 0 ≤ s ≤ t,

− 1

π
t(π − s), t ≤ s ≤ π.

By the definition of ∥ · ∥X , it is also immediate to see that

∥T−1h∥X = ∥v′′∥Z = ∥h∥Z

so that T−1 is continuous.

Hence, all conditions of the implicit function theorem are satisfied and we may conclude that,
for all λ sufficiently small, F (u, λ) = 0 has a unique small-norm solution u ∈ X, and that the
map λ 7→ u(λ) is continuous.


